150=-16x^2+128x+6

Simple and best practice solution for 150=-16x^2+128x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 150=-16x^2+128x+6 equation:



150=-16x^2+128x+6
We move all terms to the left:
150-(-16x^2+128x+6)=0
We get rid of parentheses
16x^2-128x-6+150=0
We add all the numbers together, and all the variables
16x^2-128x+144=0
a = 16; b = -128; c = +144;
Δ = b2-4ac
Δ = -1282-4·16·144
Δ = 7168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7168}=\sqrt{1024*7}=\sqrt{1024}*\sqrt{7}=32\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-32\sqrt{7}}{2*16}=\frac{128-32\sqrt{7}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+32\sqrt{7}}{2*16}=\frac{128+32\sqrt{7}}{32} $

See similar equations:

| (6x+60)+9x=180 | | 15/10=5/x | | 7x-10=1x+50 | | x+2x+x+x+x=100 | | 3/5=u/9 | | --5(w+1)=5w-7+2(3w+6) | | 2x+8-x=16 | | 27=5u | | 2x+8+x=16 | | 5^2-15s+50=0 | | (3x+3)(3x+3)=5+x(8+x) | | 7(y+4)=-4(3y-6)+5y | | 5=-0.1x^2+1.1x+3 | | 8x^2+5x-31=0 | | V=(18-2x)(12-2x)x | | 8+3x=6x-20 | | 2/3(12x-9)=5x-48 | | 5-x/4=1 | | w/34=w–12 | | -4x-3(2-x)=3x+6 | | 22=1x | | 3(r+1.6)−8r=9.4 | | 3z+3z-6=0 | | 2^x-3=8^5x | | 8-12x=7x-4 | | 2(9x)=72 | | 2(y+3)=3(y-1) | | -8(x-3)=40 | | (2y-3)^2+25=0 | | 5÷7=35÷(y+1) | | -x^2+15x=73-3x | | 13=2w-9 |

Equations solver categories